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Directed cell migration is a complex process that involves front-rear polariza-
tion, characterized by cell adhesion and cytoskeleton-based protrusion, retrac-
tion, and contraction of either a single cell or a cell collective. Single cell
polarization depends on a variety of mechanochemical signals including exter-
nal adhesive cues, substrate stiffness, and confinement. In cell ensembles,
coordinated polarization of migrating tissues results not only from the applica-
tion of traction forces on the extracellular matrix but also from the transmission
of mechanical stress through intercellular junctions. We focus here on the
impact of mechanical cues on the establishment and maintenance of front-
rear polarization from single cell to collective cell behaviors through local or
large-scale mechanisms.

Front-Rear Polarity in Single Cells and Cell Ensembles

One of the most striking features of animal cells is their ability to acquire and sustain an
asymmetric shape in response to environmental cues. This cellular property, called cell polari-
zation, is fundamental to the function of most eukaryotic cells, and it is particularly relevant for
shaping tissues during development. Cell polarization also plays a pivotal role in intracellular
transport, cell division, differentiation, and directional cell movement. Front-rear cell polarity
occurs in both single cells and cell collectives. Front—rear cell polarity is spontaneously acquired
by migrating isolated cells as well as by cohesive cells during wound healing, epithelial gap
closure [1-3], development, and cancer invasion [4,5]. During migration a single cell must first
polarize and form its front or leading edge, which is characterized by cytoskeleton assemblies
that produce a protrusion. At the leading edge, actin projections known as lamellipodia (see
Glossary) form associated to nascent cell-extracellular matrix (ECM) contacts, which leads to
the stabilization of an oriented internal actin rearward flow and ultimately cell protrusion [6]. At the
rear of lamellipodia, anchoring of mature cel-ECM contacts to actomyosin allows the formation
of longitudinal stress fibers. Consequently, the rear, or uropod, is established under strong
tension and adhesion sites are disassembled [7], leading to cell retraction. Cell polarity is thus
associated with a particular organization and orientation of the cytoskeleton and adhesive
structures.

Front-rear polarization of single cells can be elicited by chemical signals such as chemokines
and morphogens [8]. For instance, reaction—diffusion processes can lead to pattern formation
and trigger cell polarity as described by the pioneering work from Alan Turing [9]. However, it can
also be acquired constitutively by isolated fibroblasts or keratocytes likely as a result of
spontaneous changes in intracellular biochemical signaling and/or mechanics [10,11]. Indeed,
many biochemical cues are involved in the establishment of cell polarity: diffusing factors such as
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Physical properties of the environment
have functional roles in cell polarization.

Rigidity sensing is not only governed by
local dynamics of focal adhesions but
also by large-scale actin cytoskeleton
polarization.

Matrix stiffness regulates the internal
rheological properties of the
cytoskeleton.

Single cell polarization depends on the
coupling between actin and microtu-
bule cytoskeletons.

Polarization within multicellular assem-
blies is regulated by a crosstalk between
cell-matrix and cell-cell adhesions.

Large-scale coordinated movements
within epithelial cell sheets depend on
external physical constraints.
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morphogens and chemokines, Rho family GTPases, as well as plasma membrane determinants
such as par complex proteins, as reviewed in [12]. Front—rear polarization has also recently been
shown to be elicited by external force application [13], indicating that mechanical cues control at
least some aspects of the establishment of front-rear polarization. This could be achieved
through changes in the cytoskeleton, focal adhesions (FAs), and contractility [6,14-16]. As
opposed to passive materials, living cells actively respond to mechanical perturbations occurring
in their environment. Cell adhesion to the surrounding ECM is an example of a mechanical
process whose cell-generated forces adapt to the mechanical properties of their microenviron-
ment [17]. Accordingly, front—rear polarity can emerge from a symmetry breaking mechanism
whose origin can be determined by the mechanochemical properties of the ECM and the
preferential orientation of adhesion complexes, cytoskeletal structures, and traction forces.

Motile clusters of cells have additional strategies over single cells to polarize and migrate. In some
processes, such as vascular sprouting, only the front cell of the cluster shows clear front-rear
polarity [18]. By contrast, in other processes all cells within the motile group exhibit front-rear
polarization, even if they retain stable cell-cell junctions [19-22]. This is the case of cell
monolayers invading a free space, a process in which nearly every cell is able to extend
lamellipodia and generate traction forces on its underlying substrate [23]. Polarity in cell
collectives can also involve the appearance of highly motile cells at the front of the tissue called
leader cells [1,24], followed by the organization of small cohorts of cells locally guided by these
leaders [25]. Importantly, bulk cellular motions also display large-scale coordinated movements
of cell clusters that can be seen as the emergence of large-scale polarization within the tissues
[1,26]. This type of organization allows cell clusters to act as multifunctional entities in which
some cells are specialized in migration while others carry out distinct functions such as
differentiation or division [19]. Thus, polarized and unpolarized cells may coexist during collective
cell migration.

Despite these differences, some features of collective cell polarization can be understood using
the same framework as single cell polarization. For example, the emergence of large-scale
polarized movements within epithelial cell sheets largely depends on external geometrical and
mechanical constraints [21,27-30]. In analogy with single cells, cell polarization can be defined
by cytoskeleton ordering [30,31], as well as correlated orientation over multiple cells [32].
However, the transmission of stresses through cell-cell junctions and its propagation through
cellular assemblies provides an additional layer of regulation that is absent in single cells
[23,26,30,33]. The present review focuses on this novel paradigm: the influence of the mechani-
cal environment on the acquisition of polarization. In line with current understanding of active
matter physics, polarization can be defined as the emergence of order and quantified by different
order parameters, such as cytoskeleton organization [30,34,35], velocity correlation [26,36],
cellular forces [21,34], and cell shape [37], at various length scales from the single cell [38] to
multicellular assemblies [39].

Single Cell Polarization by Mechanical Cues

We first discuss how mechanical cues may direct front—rear polarization and migration of single
cells (Figures 1 and 2). Cell adhesion and migration of an isolated cell on a rigid ECM revealed an
intrinsic capacity of cel-ECM adhesion sites and cytoskeleton to self-polarize, that is, sponta-
neously organize in an anisotropic manner in the absence of external biochemical or mechanical
cues [38,40]. Fibroblasts spreading on ECM-coated rigid surfaces are initially isotropic, sur-
rounded by a circular lamellipodium in the absence of polarization [41]. Over time the evolution of
isotropic radial self-organized F-actin leads, by a symmetry breaking process, to the orientation
of actin fibers along a preferential direction of the lamellipodium-uropod axis [38]. This process of
polarization requires cell contraction [42], FA proteins such as talin [43] and o«-actinin [44], and
depends on substrate compliance [34,42].
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Figure 1. Single Cell Polarization by Biomechanical Cues. (Left) Circular shape of a single cell under various
conditions with the formation of noncontractile actin radial fibers at the edge and transverse arcs at the back (actin filaments
are in dark red). Microtubules (MTs; orange) are confined in the central region. Light red dots represent focal adhesions (FAs)
and black arrows represent the direction of the actin retrograde flow. (Middle) Appearance of ventral stress fibers that are
organized in local domains on substrate of intermediate stiffness. The order parameter, S, that characterizes actin
orientation is low. Note MTs reaching the edge of the cells. (Right) Actin polarization characterized by a large-scale
alignment of actin filaments on stiff substrates, at long time scales and/or on fibronectin-coated surfaces (S = 1).

Self-polarization can also be driven by adhesive patterns imposing specific distribution of FAs
[45,46], and by anisotropies in substrate stiffness, which favor cell elongation and FA orientation
in the direction of highest stiffness [47,48]. In this connection, the seminal work by Lo et al. [17]
demonstrated that cells migrate toward stiffer regions in a mechanism called durotaxis. The
measurements of traction forces on substrates of various stiffness revealed a positive correlation
between cell-generated forces and substrate rigidity [17,49]. The temporal redistribution of FAs
during cell polarization on rigid matrices appeared to precede cell elongation leading to the idea
of a local regulation of mechanosensing at the scale of FAs [42]. Cell-matrix adhesions
composed of clusters of proteins are able to dynamically adjust both their size and shape to
the applied stress through, for instance, protein phosphorylation or conformational changes
[50,51]. During durotaxis, both the distribution and the dynamics of local traction forces within a
single FA may explain rigidity sensing and cell migration along stiffness gradients [52]. Thus, at
the single cell level, the well-described mechanosensing of FAs appears as a trademark of
polarization together with actin cytoskeleton remodeling.

Along this line, early work [53] determined a direct correlation between FA size and mechanical
force. The stress applied at the adhesion site, defined by o = % (where Fis the traction force and
A the FA area) kept a constant value showing a concomitant evolution of both quantities.
However, recent studies describe a more complex relationship between traction forces and FA
areas showing that this relationship either remains valid only during the initial stages of FA growth
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Glossary

Actomyosin: contractile cellular
network formed by the association of
nonmuscle actin fibers and myosin
motors, mostly myosin II.

Adherens junctions: actin-
associated intercellular junctions, part
of the apical junctional complex of
epithelial cells. They are recognized at
the ultrastructural level by electron-
dense accumulation at the inner face
of the plasma membrane of apposed
cells.

Cadherins: conserved
transmembrane proteins having

an activity of homophilic
Ca?*-dependent cell-cell adhesion.
They constitute the intermembrane
link of adherens junctions and
cadherin adhesions.

Cadherin adhesions: cadherin-
mediated cell-cell contacts observed
between cells or between cells and
cadherin-coated surfaces.
Durotaxis: tendency of cells to move
from soft to stiff ECM.

Extracellular matrix (ECM): fibrous
material constituted by cell-driven
polymerization of an ensemble of
proteins, glycoproteins, and
proteoglycans secreted by cells and
filling the intercellular space in vivo
and coating the cell culture
substratum in vitro.

Focal adhesions: micrometric focal
points of interaction of cells with the
ECM made of pleomorphic
multiprotein complex linking the ECM
to the actomyosin cytoskeleton via
adhesion receptors of the integrin
family.

Lamellipodia: large cell membrane
protrusion, usually found at the front
of migrating cells, characterized by a
dynamic rearward flow of branched
actin filaments.
Mechanotransduction: literally,
transduction of forces across the
plasma membrane or other cell
compartment (nuclear envelope). It
can be associated with the
transformation of mechanical work
into a biochemical signal.

Nematic phase: the liquid crystal
state is a distinct phase of matter
observed between crystalline (solid)
and isotropic (liquid) states. For a
material made of rod-like molecules,
the crystalline state corresponds to
molecules regularly placed on lattice
sites and aligned, whereas the
position and orientation are randomly
distributed in the liquid state. A liquid
crystal is a material where molecules
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Figure 2. Response of Single Cell Actomyosin and Microtubule (MT) Organization to Adhesion and Mechan-
ical Cues. (A) Rat embryonic fibroblast (REF52) cells seeded on soft and stiff fibronectin-coated surfaces (M. Gupta et al.,
unpublished) [61]. (B) Double staining for F-actin (red) and MTs (green) of C2C12 cells spread on N-cadherin or fibronectin
substrates [61]. (C) Aplysia growth stirred for 4 min with an adhesion molecule-coated bead was stained for F-actin (red) and
MTs (green) [67]. Scale bars: A,B =20 um; C=5pum.

[54] or varies with substrate elasticity [55], suggesting that FAs could not be the only mecha-
nosensors responsible for rigidity sensing. Among other possibilities of mechanosensing regu-
lation, the actomyosin cytoskeleton appears as a good candidate because it has been shown to
react, remodel, and polarize under mechanical signals [35,52,56-58]. Actomyosin bundles,
formed by actin filaments maintained under tension by myosin Il force generating dipoles, can
act as large-scale mechanosensitive units by exhibiting a higher degree of polarization in
response to stiffer substrates, characterized by a higher orientational order parameter
[35,55]. In addition, cell migration from soft to stiff has been shown to be regulated by an
enrichment of the nonmuscle myosin IIB isoform at the rear of the cell, which may explain the
persistent migration of cells on matrix gradients [56]. On soft substrates, actin cytoskeleton is

Cell

are intermediately ordered between
solid and liquid states. A class of
liquid crystals, called nematics,
corresponds to molecules that
display an orientational order with no
positional order.

Plithotaxis: tendency of cells to align
and migrate along the direction of
maximum intercellular tension.
Viscoelasticity: property of a
material with rheological properties of
both elastic solids and liquids upon
deformation. The Basic rheological
models refer to the Voigt solid or the
Maxwell liquid in which the system
either does not undergo any
deformation or flows as a liquid at
long time scales, respectively. A
simplified view of biological networks
as physical gels, characterized by
turnover and remodeling, describes
them as Maxwell liquids, that is,
elastic at short times and viscous at
longer times.
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highly dynamic exhibiting a rearward flow of circumferential F-actin toward the nucleus, whereas
stable stress fibers coupled to FAs are formed on stiffer substrates [34]. Increasing substrate
stiffness correlates with the emergence of an orientational order in F-actin, which may be
explained by an isotropic to nematic transition that could be compared with phase transitions
described in passive materials such as liquid crystals (Box 1). Such behavior has been observed
for different cell types including stem cells and fibroblasts [35,42,55]. Contractile cellular subunits
could thus reorganize over time to produce an adequate force response required for intracellular

Box 1. Mechanics of Passive Materials

At the level of single cells, mechanical properties are controlled by the cytoskeleton, which is composed of a polymeric
network made of semiflexible filaments crosslinked by other proteins through low energy chemical interactions such as
dipolar or ionic, or hydrogen bonds having a finite bound time. This property makes this physical gel different from a
chemical gel in which crosslinks are made of stable covalent bonds. For standard passive polymeric gels, the application
of external strain induces an alignment of filaments along the direction of the strain (Figure IA). The degree of alignment
can be quantified by measuring the order parameter of fiber alignment, S, where S = 0 for isotropic distribution; S = 1 for
perfectly aligned fibers along a particular direction).

Cytoskeletal filaments are elongated objects that present a polarity that may be reminiscent of passive systems such as
liquid crystals that may be rod-shaped molecules with elongated and anisotropic geometry. Similar to cytoskeleton
filaments, liquid crystal molecules can be polar molecules with distinct heads and tails (Figure IB). In response to various
stimuli such as temperature, magnetic or electric fields, or an increase in density, these systems can cooperatively order
either in a polar or in a nematic phase. In a polar phase, the molecules are on average aligned in the same direction such
as actin orientation in lamellipodia, whereas in a nematic phase, polar objects are aligned but with random head-tail
orientations such as in the organization of antiparallel actin filaments within stress fibers (Figure IB). It is worth noting that
nematic ordering can be also obtained with elongated apolar particles. This distinction may be important in under-
standing the organization of collective cell behaviors because single cells can exhibit elongated shapes with or without
front-back polarity.
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Figure |. Properties of Passive Systems. (A) Response of polymer networks under directional external constraint. (B)
Examples of phase transitions in liquid crystal materials in response to external stimuli including apolar and polar particles.
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polarization because the alignment of actin fibers favors a cooperative effect of pulling forces
through myosin motors along the same direction. In other words, the internal active force
produced by actomyosin contractility is directly coupled to the orientational ordering of actin
filaments.

As opposed to passive materials, this active feedback between internal stress and polarization
reinforces cellular mechanosensitivity to substrate elasticity. From a theoretical view, this large-
scale mechanical response can be explained in the framework of continuum elasticity [35] or
active gel theory [34,59]. In the first case, cells are represented by elliptical inclusions onto an
elastic and deformable matrix. The active actomyosin forces in the cytoskeleton are modeled by
‘force dipoles’ that arise from the equal and opposite forces exerted by myosin motors at two
nearby points on actin filaments. The internal cellular stress promotes polarization and orienta-
tion of these dipoles along their principal direction, leading to a correlation among actin
polarization, cell shape anisotropy, and substrate elasticity [35]. Similarly, an approach based
on active gels that assumes the cytoskeleton behaves as an elastic nematic gel can explain the
emergence of order at the cellular scale (Box 2). In such cases, the coupling between substrate
stiffness and order induced by gel activity is responsible for a substrate stiffness-dependent
transition from isotropic to nematic order (Figure 1). This phase transition may be governed by
the density of F-actin within the cell: as substrate rigidity increases, actin filament density
increases and reaches a critical value over which nematic order appears, causing the stress
to become anisotropic [34].

On soft substrates, the lifetime of actin structures is smaller than the one observed on stiffer
surfaces, leading to polymerization-driven actin flows from the cell edge as opposed to the
emergence of stable stress fibers. This suggests that increasing matrix stiffness can trigger
changes in cell mechanical properties from a fluid-like behavior on soft substrates to a more
solid-like behavior on stiff substrates (Box 3). Interestingly, cell shape appears to be also affected
by substrate stiffness, leading to circular shapes on soft substrates and more polarized cell
shapes as stiffness increases, indicating that changes in cell polarization as a function of
substrate stiffness accompany changes in cell rheology from viscous on soft substrates to
elastic on stiff substrates (Figure 1). The transition from a fluid to a more elastic-like response may
come from the dynamics of FAs on soft and stiff substrates. On soft substrates, FAs are short-
lived structures leading to low friction with the substrate. Since FAs serve as mechanical links
between actin cytoskeleton and underlying substrate, this low friction favors actin flows in
response to contractile stress which, in turn, contributes to destabilizing FAs. By contrast, solid-
like behavior on stiffer substrates promotes FA assembly, and more generally stabilizes cross-
linked actin structures. Along this line, it appears that changing the dynamics of actin cross-
linkers can tune the solid and fluid-like behaviors of living cells [60]. This finding suggests that
actin remodeling through force generation and FA assembly could involve a feedback loop that
drives rigidity mechanosensing.

Cell-Cell Interactions, Mechanics, and Polarization

The emergence of ordering and polarization is a multiscale feature spanning from the subcellular
cytoskeletal filament to the multicellular tissue. Whether cell colonies migrate spontaneously or in
response to a chemical or a mechanical gradient, their polarization strategies integrate the
generation of intercellular physical forces with upstream and downstream biochemical events. In
light of single cell polarization elicited by cel-ECM interactions, we review some strategies that
involve cell-cell interactions.

Single Cell Actomyosin and Microtubule Regulation by Cadherin Adhesions

To test whether the mechanisms described for single cell polarization scale to the supracellular
length, studies have analyzed the spreading and actin organization of mesenchymal and
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Box 2. Rheological Properties of Cytoskeleton Gels

Depending on the lifetime of crosslinks, physical properties of gels may vary over time. Measurements of rheological
properties are important for characterizing the mechanical behavior of materials. This can be done by applying a stress
and measuring the resultant deformation. The application of a stress o” induces a change in length, AL, of the material.
The strain is defined as y = ATL and the strain rate is defined as the temporal derivative of the strain y = %. The elastic
response is characterized by resistance of the material to deformation, like a spring: ¢ = Ey where E is Young's modulus.
The viscous component allows the material to flow as a fluid and the resistance depends on the strain rate leading to
oP = ny where n is the viscosity. The Basic rheological models refer to the Voigt solid or the Maxwell liquid in which the
system either does not undergo any deformation or flows as a liquid over long periods of time, respectively (Figure |).
These models are represented by a purely viscous damper, 1, and a purely elastic component, E, connected either in
parallel or in series, respectively. A simplified view of cytoskeletons as physical gels, characterized by short crosslinker
lifetimes, describes them as Maxwell liquids, that is, elastic at short times and liquid at longer times (viscoelasticity). This
approach thus relies on hydrodynamic theories at macroscopic scales. By applying a sudden and constant deformation,
the characteristic relaxation time given by T = N/E is obtained by measuring the resulting stress over time. In the absence
of ATP, the mechanical properties of cellular cytoskeletons could be studied using well-established methods of polymer
rheology and hydrodynamics. This passive description does not incorporate active processes at work in the cytoske-
leton. Indeed, more complex behaviors have been found to describe living cells and cytoskeleton remodeling including
nonlinear elasticity, power laws, and fluidization [99].

In contrast to passive systems, living systems have another important characteristic: they are controlled by out-of-
equilibrium processes using ATP hydrolysis as the main energy source. Mechanical properties of cells are also driven by
out-of-equilibrium processes. For instance, cytoskeleton components such as actin and MTs continuously experience a
polymerization/depolymerization process (dynamic instability) and interact with force-generating molecular motors. Thus,
the active gel theory may well apply to the cytoskeleton. The active gel theory combines the hydrodynamic properties of
passive materials together with an active stress reflecting, for instance, the activity of molecular motors such as myosins.
As such, the cytoskeleton is described at large length scales compared with the mesh size of the gel, and at long time
scales compared with the typical relaxation times of the actin filaments [59].

Basic rheological models
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solid i Stress -9 ">
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Figure |. Basic Rheological Models. For the Voigt solid, the system does not undergo any deformation at long time
scales. It is represented by a purely viscous damper and a purely elastic component connected in parallel. For the
Maxwell liquid, the system flows as a liquid over long periods of time. It is represented by a purely viscous damper and a
purely elastic component connected in series.

epithelial cells on recombinant cadherin-coated glass surfaces, mimicking the formation of actual
cadherin-mediated cell-cell contacts [61,62]. These studies revealed a behavior similar to cells
seeded on ECM-coated compliant surfaces [34,38]. Despite the formation of actin-anchored
cadherin adhesions, cells remain round and isotropic, with no sign of anisotropic distribution of
the actin cytoskeleton (Figures 1 and 2A,B). The rearward flow of circumferential F-actin becomes
elevated, as in cells spread on fibronectin-coated soft surfaces, suggesting cells on cadherin-
coated substratum apply low friction forces and have a fluid-like behavior [61]. Although cadherin
adhesions are mechanotransduction adhesion complexes, several mechanical/biochemical prop-
erties distinguish them from FAs: the amplitude of forces transduced at cadherin adhesionsiis lower
than those transduced at FAs [63,64] and cadherin adhesions disassemble in conditions where cell
contractility is increased, suggesting that they cannot sustain the force threshold required by the
actomyosin network to undergo a fluid-to-solid phase transition.
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Box 3. Mechanical Properties of Active Systems

The active gel theory results in the generalization of hydrodynamic theory that takes into account the out-of-equilibrium
nature of the systems. This active stress is associated with the actomyosin network to explain cell-generated forces and
contractility. The model can be obtained by coarse-graining the molecular complexity of the cytoskeleton and thus
provides phenomenological equations for the description of macroscopic continuous variables such as density,
velocities, and orientation field of cytoskeletal filaments (for a complete description of the different approaches of active
gel theories see the review by Marchetti et al. [100]). The hydrodynamic active gel theory can be applied to generic active
viscoelastic materials such as active Maxwell liquids. As such, it can describe the short-time elastic behavior and the long-
time active liquid crystal behavior. The global stress within the material in the long-time limit is composed of two
components in a tensorial relationship:

O’U'ZOJ,;"FO';

where i corresponds to a passive system and o‘j to the active contribution (Figure |).

The active part is given by the following relationship:
o =¢85 +¢Qy

where the first term corresponds to the isotropic part (the system contracts for ¢ < 0 and expands for ¢ > 0) and the
second term corresponds to the orientational ordering of filaments (Q; is the nematic order parameter). An increase of
alignment of the actomyosin contractile units induces an increase of active contribution of the stress. In the case of the
actin cytoskeleton, this approach can be used, for instance, to describe the emergence of spontaneous flows within the
cytoskeleton that are crucial for lamellipodium motion [101], as well as for cytoskeleton rheology and polarization in
response to various chemical and physical cues (Figure 2). This approach recently described the large-scale responses of
F-actin polarization within single cell to substrate stiffness [34]. Theoretical modeling based on this active gel approach
demonstrates a biphasic rheology of the actin cytoskeleton, which transitions from fluid on soft substrates to solid on
stiffer ones.

Interestingly, this approach can be used not only to describe the internal cytoskeleton but also at a larger scale, cellular
assemblies [100]. During collective cell behaviors, different processes occur including division, extrusion, and rearrange-
ments that may be described on a large scale by such a hydrodynamic approach even though the components in these
situations are cells instead of filaments. More generally, this approach can be used to model active systems such as bird
flocks, bacterial colonies, fish schools, and cell ensembles.
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Figure I. Actin Architecture in a Single Migrating Cell including Actin Cortex, Lamellipodia, and Different
Types of Stress Fibers. Actin organization within the cell and its link to filament ordering. Ventral stress fibers:
antiparallel filaments and contribution of both active and passive stresses to contractility. Organization of branched actin
network in lamellipodial structures.
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In addition, it appears that mutual influence of actin and microtubule (MT) organization is
important to drive cell polarization. The isotropic, rapid rearward flow of actomyosin has a
negative effect on the penetration of MTs at the leading edge both in cells seeded on stiff
cadherin substrates and on soft ECM-coated surfaces [61] (Figure 2A,B). Conversely, cells
seeded on ECM-coated glass surfaces, unconstrained or confined on micropatterns, display
MTs oriented parallel to stress fibers reaching the FA zone at the leading edge [61,65], a situation
that is only achieved in cells adhering to cadherin surfaces when the tangential actomyosin arcs
are destroyed by cytochalasin treatment [61]. Here it is important to note similarities with the
polarization of growth cones in neurons (Figure 2C), which have a similar distribution and
dynamics of actomyosin and MTs to fibroblasts on compliant matrices [66]. The application
of an external outward directed force induces a local reduction in retrograde actin flow and a
concomitant distal penetration of MTs, which precede preferential migration of the growth cone
in the pulling force direction [67]. Altogether, these observations support the notion that
actomyosin polarization is controlled at the single cell level by the biomechanical properties
of both cell-matrix and cell-cell adhesions, and that this anisotropy impacts a major polarity
marker, the MT network.

Tensional Symmetry Breaking in Cell Collectives

The biomechanical mechanisms mentioned earlier are clearly understood in minimal cell assem-
blies such as cell doublets with a single junction. A number of groups have shown [68-72] that
these reductionist systems are strongly polarized in an antiparallel geometry characterized by an
asymmetric position of the nucleus toward cell-cell contacts and an opposite orientation of the
nucleus—centrosome axis and of the MT network toward cell-matrix adhesions. Interestingly,
actomyosin distribution was also polarized but opposed to that of actin filaments, with enrich-
ment toward cell-cell junctions. Cadherin and actomyosin were both involved in some aspects
of this polarization such as the positioning of the nucleus [68,69].

In the context of a larger cell cluster, however, these mechanisms can only occur if symmetry is
broken so that tension at the front and rear of a constituent cell is distinct. An appealing
mechanism to achieve such tensional symmetry breaking is the existence of supracellular
gradients in intercellular tension within the cell collective. This type of gradient has been
demonstrated in epithelial cell sheets where they result from an imbalance of traction forces
at the cell-matrix interface (Figure 3A) [23]. Intercellular tension differentials can vary dynamically
across cell clusters of different sizes as a consequence of a mechanical wave propagating
between the edges of the cluster [73]. Whether cells are able to sense these tension differentials
and translate them into polarization through the mechanisms described earlier remains
unknown.

Coordinated Polarization in Multicellular Assemblies: Plithotaxis, Cell Crawling, and
Supracellular Contractile Cables

The advent of techniques to measure cell-cell forces has unveiled new mechanisms for the
collective orientation and polarization of cells within large multicellular collectives (Figure 3C) [21].
Tension is highly heterogeneous and anisotropic within epithelial and endothelial cell mono-
layers; however, cells tend to move along the lines in which tension is maximal. This mechanism
is called plithotaxis and is dependent on the integrity of cell-cell junctions. It is important to note
that tension is not a vector and, as such, it can define the lines along which cells move but not the
direction in which they move. Thus, plithotaxis requires similar symmetry breaking mechanisms
as those described earlier to fully define polarity of a cell moving in a collective.

Besides plithotaxis, a widespread mechanism for the coordination of collective cell migration is

the formation of supracellular actomyosin cables (Figure 3C,D). These cables line the concave
edge of gaps within epithelial layers and contract like a purse-string to drive cells forward and
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Figure 3. Mechanisms of Collective Cell Polarization by Mechanical Cues. (A) Cells polarize downstream of a
gradient of intercellular tension at the leading edge of expanding cell monolayers. (B) Cell doublets repolarize away from their
intercellular contact. Under certain conditions, such repolarization leads to cell repulsion through contact inhibition of
locomotion (CIL) interactions. (C) Spontaneous polarization of cell clusters and swirls within cohesive monolayers. These
polarized structures emerge as a function of cell density, tension fluctuations, and confinement. (D) Contractile cables lining
the leading front of cell monolayers coordinate cell polarization and Rho-GTPase activation at a supracellular length scale. (E)
Contractile cables coordinate cell polarization at the leading front of a wound.

seal gaps [74]. Supracellular actomyosin cables have been widely reported during develop-
mental processes such as dorsal closure in Drosophila or epiboly in zebrafish [75,76], as well as
during epithelial wound healing both in vivo and in vitro [77,78]. In some of these processes,
such as wound healing in the early embryo, contraction of the supracellular cable is the only
mechanism behind collective cell movements, but in most processes cells exhibit both a
supracellular cable and lamellipodial or filopodial protrusions at their leading edge (Figure 3D,E)
[22].

The coexistence of these mechanisms can be regulated by the geometry of the cell boundary
through a coupling between local curvature and actin organization, which drives a large-scale
process linking cell crawling and actin-based purse-string mechanisms [3,79]. A clear example
of this cooperative mechanism was recently reported in supracellular fingers at the leading edge
of advancing cell monolayers [22]. These fingers are usually led by a large and highly protrusive
cell that acts as a leader cell, which is mechanically linked to several rows of follower cells
through a contractile actomyosin cable that lines the edge of the finger (Figure 3D). Besides
coordinating cell movement, this cable defined patterns of Rho-GTPase activation, effectively
converting the finger into a ‘super cell’. Additionally, leading cells may be linked through the
nonclassical cadherin, Pcdh17, which accumulates at a cell-cell contact specifically in the
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lamellipodia of comigrating cells to create effective ‘super lamellipodia’ [80]. These super
lamellipodia might provide higher migration coordination by tightly coupling protrusion of
adjacent cells. These supracellular structures are emergent properties that enable groups
of cells to exhibit supracellular polarization patterns that might provide cells with higher
migration efficiency.

Polarization Downstream of Attractive versus Repulsive Cell-Cell Interactions

Beyond attractive, adhesive, cell-cell interactions, for certain mechanisms of collective cell
polarization, it is becoming increasingly clear that repulsive forces are required to explain cell
sorting, pattern formation, and collective migration of weakly adherent cells [81]. The simplest
case of a repulsive interaction is volume exclusion, that is, the inability of two cells to occupy the
same volume at the same time. When a cluster increases its density to become tightly packed,
volume exclusion places constituent cells in a jammed state. Nontrivial emergent features of cell
jamming include divergent correlation lengths, dynamic heterogeneities, and force chains
[21,82]. Each of these physical features provides cells with the ability to interact with their
neighbors over distances that grow with cell density, and thus offers the possibility to mediate
polarization of cell collectives. Importantly, it is worth noting that jamming is not restricted to
responses to increasing cell density; jamming transitions may also occur as a mere conse-
quence of monolayer topology, that is, the average number of neighbors in a monolayer [83].

Besides volume exclusion, adjacent cells can also repel each other through contact inhibition
of locomotion (CIL). CIL was first described in the 1950s following the phenomenological
observation that when two cells collide they repolarize to migrate away from each other [84].
Thus, rather than forming stable adhesions, cells exhibiting CIL repel each other upon collision.
Because cells are not inertial systems, repulsion should not be interpreted as a physical
collision between passive elastic objects but rather as a complex mechanically active process
involving the repolarization of the migratory machinery (Figure 3B). Little is known about the
mechanisms behind repolarization during CIL, but current evidence indicates a transient
involvement of N-cadherin homophilic adhesion between colliding cells. Experiments during
neural crest development in Xenopus laevis showed that these adhesions transmit transient
but significant cell-cell forces before cells separate [85]. This finding was later confirmed in
Drosophila hemocytes by an elegant observation of actin flow dynamics [86]. In Xenopus
neural crest cells, CIL is specifically acquired upon epithelial-mesenchymal transition (EMT)
and E- to N-cadherin switch [87]. CIL has also been shown to be mediated by Eph/Ephrin [88]
and Slit-Robo repulsive cues [89], but the link between these interactions and physical forces
is unknown.

Repolarization downstream of a tugging force is not restricted to forces applied through actin-
based adhesions. Using Xenopus laevis mesendoderm cells as a model, it was shown that
pulling on magnetic beads coated with the protein C-cadherin causes cells to repolarize in the
opposite direction of the pulling force [90]. This response involved intermediate filaments (keratin)
and the desmosomal protein plakoglobin rather than the actin cytoskeleton. The fact that both
actin and intermediate cytoskeleton are involved in force-dependent polarization responses
suggests the existence of either common mechanotransduction pathways or redundant
mechanisms of polarization.

Molecular Mechanisms of Front—-Rear Polarization Downstream of Cell-Cell Forces

The search for molecular pathways responsible for the link between cell-cell adhesion forces
and front-rear polarization has just started. Candidate pathways include mechanical sensors
residing at cell-cell junctions [90-92] and downstream regulators of Rho-GTPases [22,93,94].
Recently, the tumor-suppressor protein Merlin was shown to localize at intercellular junctions in
nonmotile monolayers of MDCK cells but become cytoplasmic at the onset of collective cell
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migration [95]. Merlin has been shown to regulate Rac1 function, thus potentially becoming a key
candidate to explain coordination and polarization in monolayers. Experiments during neural
crest development in Xenopus suggested that the Wnt/PCP pathway is activated downstream
of a physical force applied through N-cadherin adhesions, which could inhibit Rac1 at a cell-cell
contact and explain repolarization [96]. During Xenopus mesendoderm migration, a key molec-
ular player contributing to cell polarity downstream of a physical force is plakoglobin [90], which
has been shown to negatively regulate Rac1. Thus, Rac1 emerges as a key hub that regulates
polarization downstream of the activation of distinct mechanosensors.

Concluding Remarks

In conclusion, we reviewed the bases of conceptual framework(s) to understand, model, and
direct polarization from the subcellular to the tissue scale. The understanding of these processes
takes into consideration both biochemical reactions and material mechanics. Knowledge on
cytoskeleton, cell, and environment mechanics and crosstalk with more classical biochemical
processes are still largely fragmented. Further understanding will require a more profound
insight into active and passive properties of actomyosin as well as intermediate and MT networks
at various time and length scales. It will also require a more precise determination of force
transmission at cell-cell contacts and its regulation by ECM mechanical properties and
cell-matrix adhesion.

There is also an urgent need to progress in the molecular understanding of cellular and
subcellular mechanosensing at cell-cell and cell-matrix contacts and on instructive biochemical
cues mobilized at the various scales. Clearly, we are at early ages of the understanding of this
multiscale polarization by mechanical cues. This is, however, a crucial bottleneck in under-
standing cell and tissue polarization in 2D layers and 3D matrices in reconstituted tissues as well
as in understanding the general principles underlying morphogenetic movements (see Out-
standing Questions). We anticipate that the ideas reviewed here can be extended to 3D matrices
as suggested by a previous study [97]. This understanding will have high incidence also in cancer
biology [98] since changes in 3D environmental stiffness modulate cellular morphology of
epithelial cell colonies leading to a more invasive behavior with a loss of apicobasal polarity
in favor of front—back polarity and actin stress fiber formation.
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